ntroduction	OCOCOCO	Topologie 0000000000	Surfaces parametriques	Resultats	00000
LIRMM		Castom CAD Seftware			6
R	econstru	iction d'ur d'un m	n modèle B-Re naillage 3D	p à part	ir
	applic	ation à la rét	ro-ingénierie indust	rielle	

Roseline Bénière

1^{er} février 2012

Rapporteurs

Mohamed DAOUDI, Professeur Fabrice MERIAUDEAU, Professeur

Examinateurs

Jean-Pierre JESSEL, Professeur Frédéric KORICHE, Maître de conférences, HDR

Directeurs de thèse

William PUECH, Professeur Gilles GESQUIÈRE, Maître de conférences, HDR Gérard SUBSOL, Chargé de recherche Invité François LE BRETON, Ingénieur LIFL, Université Lille I Le2i, Université de Bourgogne

IRIT, Université Paul Sabatier de Toulouse LIRMM, Université Montpellier II

LIRMM, Université Montpellier II LSIS, Université Aix-Marseille LIRMM, CNRS/Université Montpellier II

C4W, Montpellier

Introduction ●○○○○	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion
Les obie	ts 3D				

Conception Assistée par Ordinateur

Applications médicales

Cinéma ou jeu vidéo

Les 2 types de représentation 3D							
	Discr	ète		Para	métrique		

(points+facettes)

VS

(type+paramètres)

Introduction
0<000</th>Primitives
0000000Topologie
000000000Surfaces paramétriques
0000000Résultats
0000000Conclusion
000000Les 2 types de représentation 3D

Discrète
(points+facettes)VSParamétrique
(type+paramètres)

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
00000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
00000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

Cahier des charges :

• Maillages principalement CAO : denses ou épars

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
00000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
00000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques ⇒ extraction de zones homogènes

000000 000000 0000000			
	000 00000	000000	00000

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques
 - \Rightarrow extraction de zones homogènes
 - \Rightarrow identification

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
0000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques
 - \Rightarrow extraction de zones homogènes
 - \Rightarrow identification
 - Pouvant contenir des surfaces libres

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
0000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques
 - \Rightarrow extraction de zones homogènes
 - \Rightarrow identification
 - Pouvant contenir des surfaces libres
- Résultat : modèle B-Rep (Boundary Representation)

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
0000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques
 - \Rightarrow extraction de zones homogènes
 - \Rightarrow identification
 - Pouvant contenir des surfaces libres
- Résultat : modèle B-Rep (Boundary Representation)
 - Calcul des frontières de chaque face et de la topologie

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
0000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques
 - \Rightarrow extraction de zones homogènes
 - \Rightarrow identification
 - Pouvant contenir des surfaces libres
- Résultat : modèle B-Rep (Boundary Representation)
 - Calcul des frontières de chaque face et de la topologie ⇒ définition des relations de voisinage

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
0000					

Etats de l'art de la rétro-ingénierie :

T. Vàrady, R.R. Martin et J. Cox, **Reverse engineering of geometric models-an** introduction, 1997.

K. Chang et C. Chen, 3D Shape engineering and Design Parameterization, 2011.

- Maillages principalement CAO : denses ou épars
 - Composés de primitives géométriques
 - \Rightarrow extraction de zones homogènes
 - \Rightarrow identification
 - Pouvant contenir des surfaces libres
- Résultat : modèle B-Rep (Boundary Representation)
 - Calcul des frontières de chaque face et de la topologie
 - \Rightarrow définition des relations de voisinage
 - \Rightarrow constructions des contours

Introduction ○○○●○	Primitives	Topologie oooooooooo	Surfaces paramétriques	Résultats	Conclusion
Etat de l	'art				

Méthodes complètes ou partielles de rétro-ingénierie :

	Extraction de primitives	Surf. libres	Construction topologie
[Sunil 08]	\checkmark		
[Fischler 81]	\checkmark		
[Lavva 07]	\checkmark		
[Eck 96]		\checkmark	
[Miller 93]			\checkmark
[Chappuis 04]	\checkmark		\checkmark
[Schnabel 09]	\checkmark		\checkmark
[Huang 02]	\checkmark	\checkmark	\checkmark
[Benko 01]	\checkmark	\checkmark	\checkmark

V.B. Sunil et S.S. Pande, Automatic recognition of features from freeform surface CAD models, 2008.

M.A. Fischler et R.C. Bolles, RANdom SAmple Consensus : a paradigm for model fitting with applications to image analysis and automated cartography, 1981.

I. Lavva, E.Hameiri et I. Shimshoni, Robust Methods for Geometric Primitive Recovery and Estimation From Range Images, 2007. M. Eck et H. Hoppe, Automatic reconstruction of B-spline surfaces of Arbitrary Topological Type, 1996.

J. R. Miller, Incremental Boundary Evaluation Using Inference of Edge Classifications, 1993.

C. Chappuis, A. Rassineux, P. Breitkopf et P. Villon, Improving surface meshing from discrete data by feature recognition 2004.

R. Schnabel, P.Degener et R. Klein, Completion and Reconstruction with Primitive Shapes, 2009.

J. Huang et C. Menq, Automatic CAD Model Reconstruction from Multiple Point Clouds for Reverse engineering, 2002.

P. Benkö, R.R.Martin et T. Vàrady, Algorithms for reverse engineering boundary representation models, 2001.

Introduction ○○○●○	Primitives	Topologie oooooooooo	Surfaces paramétriques	Résultats	Conclusion
Etat de l	'art				

Méthodes complètes ou partielles de rétro-ingénierie :

	Extractio	Surf. libres	Construe	ction topo	ologie		
[Sunil 08]							
[Fischler 81]	\checkmark						
[Lavva 07]	$\overline{\mathbf{v}}$						
[Eck 96]				\checkmark			
[Miller 93]						\checkmark	
[Chappuis 04]	\checkmark					\checkmark	
[Schnabel 09]		\checkmark				\checkmark	
[Huang 02]			\checkmark	\checkmark			\checkmark
[Benko 01]	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
	Zones homogènes	Identification	Calcul param	Surf. libres	Voisinage	Contours	B-Rep

V.B. Sunil et S.S. Pande, Automatic recognition of features from freeform surface CAD models, 2008.

M.A. Fischler et R.C. Bolles, RANdom SAmple Consensus : a paradigm for model fitting with applications to image analysis and automated cartography, 1981.

I. Lavva, E.Hameiri et I. Shimshoni, Robust Methods for Geometric Primitive Recovery and Estimation From Range Images, 2007. M. Eck et H. Hoppe, Automatic reconstruction of B-spline surfaces of Arbitrary Topological Type, 1996.

J. R. Miller, Incremental Boundary Evaluation Using Inference of Edge Classifications, 1993.

C. Chappuis, A. Rassineux, P. Breitkopf et P. Villon, Improving surface meshing from discrete data by feature recognition 2004.

R. Schnabel, P.Degener et R. Klein, Completion and Reconstruction with Primitive Shapes, 2009.

J. Huang et C. Menq, Automatic CAD Model Reconstruction from Multiple Point Clouds for Reverse engineering, 2002.

P. Benkö, R.R.Martin et T. Vàrady, Algorithms for reverse engineering boundary representation models, 2001.

Introduction ○○○○●	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion
Approch	e propo	sée			

Notre proposons un processus complet de rétro-ingénierie qui répond à tous les problèmes de notre cahier des charges :

	Extraction de primitives			Surf libre	Construe	ction topo	ologie
	Zones homogènes	Identification	Calcul param	Surf libres	Voisinage	Contours	B-Rep
Notre approche	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion

Table des matières

1 Introduction

- 2
- Extraction de primitives
- Définition de la forme locale
- Définition de zones homogènes et identification
- Calcul des paramètres des primitives
- 3 Construction de la topologie
- Surfaces paramétriques
- 5 Résultats

Définition de la forme locale

Forme locale \Rightarrow **COURBURE 3D** [Dong 05], [Chen 92].

Introduction
Primitives
Topologie
Surfaces paramétriques
Résultats
Conclusion

00000
000000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
00000000
0000000
0000000
<t

Définition de la forme locale

Forme locale \Rightarrow **COURBURE 3D** [Dong 05], [Chen 92].

- courbures principales kmax et kmin
- directions principales $\overrightarrow{dir_{max}}$ et $\overrightarrow{dir_{min}}$
- la normale \vec{n}

Introduction
Primitives
Topologie
Surfaces paramétriques
Résultats
Conclusion

00000
000000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
00000000
0000000
0000000
<t

Définition de la forme locale

Forme locale \Rightarrow **COURBURE 3D** [Dong 05], [Chen 92].

- courbures principales k_{max} et k_{min}
- directions principales $\overrightarrow{dir_{max}}$ et $\overrightarrow{dir_{min}}$
- la normale \vec{n}

 $k_{min} = k_{max} = 0$

Convexe, Concave, Plan, Sphère, dirmax et dirmin

Définition de la forme locale

Forme locale \Rightarrow **COURBURE 3D** [Dong 05], [Chen 92].

Définition de la forme locale

Forme locale \Rightarrow **COURBURE 3D** [Dong 05], [Chen 92].

Définition de la forme locale

Forme locale \Rightarrow **COURBURE 3D** [Dong 05], [Chen 92].

Sommets plans voisins ⇒ même plan

Sommets plans voisins ⇒ même plan

- Sommets plans voisins \Rightarrow même plan
- Sommets sphériques voisins et même $k \Rightarrow$ même sphère

- Sommets plans voisins ⇒ même plan
- Sommets sphériques voisins et même $k \Rightarrow$ même sphère

Extraction de zones homogènes par la courbure [Lavva 07].

- Sommets plans voisins ⇒ même plan
- Sommets sphériques voisins et même $k \Rightarrow$ même sphère
- Seulement sommets voisins cylindiques ou coniques
 ⇒ même cylindre ou cône

I. Lavva, E.Hameiri et I. Shimshoni, Robust Methods for Geometric Primitive Recovery and Estimation From Range Images, 2007.

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 Définition de zones homogènes et identification

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 Définition de zones homogènes et identification
 Définition
 Conclusion
 Conclusion

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] :

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Recovering Primitives in 3D CAD meshes, SPIE Electronic Imaging 2011, 3D Imaging, Interaction and Measurement, 7864, pages 0R–1–9, 2011.

Dir0.

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 Définition de zones homogènes et identification

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] : P_1 et $P_2 \in$ même cône ou cylindre $\Rightarrow \alpha_1 = \alpha_2$

Définition d'un nouveau critère d'appartenance utilisant les directions principales [Bénière 11] : P_1 et $P_2 \in$ même cône ou cylindre $\Rightarrow \alpha_1 = \alpha_2$

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Recovering Primitives in 3D CAD meshes, SPIE Electronic Imaging 2011, 3D Imaging, Interaction and Measurement, 7864, pages 0R–1–9, 2011.

Dir01

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Calcul des paramètres des primitives

Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion

Plan et sphère par approximation linéaire sur les équations implicites [Lukács 97]

G. Lukács, A.D. Marshall et R.R. Martin, Geometric least-squares fitting of spheres, cylinders, cones and tori, 1997.

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Calcul des paramètres des primitives

Plan et sphère par approximation linéaire sur les équations implicites [Lukács 97]

G. Lukács, A.D. Marshall et R.R. Martin, Geometric least-squares fitting of spheres, cylinders, cones and tori, 1997.

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Calcul des paramètres des primitives

Cylindre /Cône \Rightarrow Image Gaussienne [Chaperon 02]

T. Chaperon, Segmentation de nuage de points 3D pour la modélisation automatique d'environnements industriels numérisés, 2002.

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Calcul des paramètres des primitives

Cylindre /Cône \Rightarrow Image Gaussienne [Chaperon 02]

- Normale à l'image \Rightarrow Axe
- Cercle \Rightarrow Rayon et position

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Calcul des paramètres des primitives

Cylindre /Cône \Rightarrow Image Gaussienne [Chaperon 02]

- Normale à l'image \Rightarrow Axe
- Cercle \Rightarrow Rayon et position
- Normale à l'image ⇒ Axe et angle
- Directions principales de courbure ⇒ Sommet

age de points 3D pour la modélisation automatique d'environnemer

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Calcul des paramètres des primitives

T. Chaperon, Segmentation de nuage de points 3D pour la modélisation automatique d'environnements industriels numerisés, 2002.

Primitives ○○○○● Topologie

Surfaces paramétriques

Résultats

Conclusion

Influence du voisinage

Primitives ○○○○● Topologie

Surfaces paramétriques

Résultats

Conclusion

Influence du voisinage

Primitives ○○○○● **Topologie**

Surfaces paramétriques

Résultats

Conclusion

Influence du voisinage

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion

Influence du voisinage

Pré-segmentation avant le calcul de la courbure [Bénière 12] :

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, A Comprehensive Process of Reverse Engineering from 3D Mesh to CAD, Computer-Aided Design, Soumis.

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion

Table des matières

Introduction

- 2 Extraction de primitives
- 3

Construction de la topologie

- Détermination du voisinage et intersections
- Contours
- Création du B-Rep
- 4 Surfaces paramétriques
- 5 Résultats

Après l'extraction des primitives \Rightarrow définition de la topologie

Après l'extraction des primitives \Rightarrow définition de la topologie

Calculer les intersections [Patrikalakis 93]

N.M. Patrikalakis, T.Maekawa et H.Mukundan, Surface to surface intersections, 1993.

Après l'extraction des primitives \Rightarrow définition de la topologie

- Calculer les intersections [Patrikalakis 93]
- Construire les contours [Miller 93]

N.M. Patrikalakis, T.Maekawa et H.Mukundan, Surface to surface intersections, 1993. J. R. Miller, Incremental Boundary Evaluation Using Inference of Edge Classifications, 1993.

Après l'extraction des primitives \Rightarrow définition de la topologie

- Calculer les intersections [Patrikalakis 93]
- Construire les contours [Miller 93]
- Déterminer le voisinage [Chappuis 04]

N.M. Patrikalakis, T.Maekawa et H.Mukundan, Surface to surface intersections, 1993.

J. R. Miller, Incremental Boundary Evaluation Using Inference of Edge Classifications, 1993.

C. Chappuis, A. Rassineux, P. Breitkopf et P. Villon, Improving surface meshing from discrete data by feature recognition 2004.

Introduction
coocoPrimitives
coocoTopologie
coocoSurfaces paramétriques
coocoRésultats
coocoConclusion
coocoDétermination du voisinage

Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion 0000000000 Calcul des intersections valides primitives graphe d'adjacence points communs Sphère1 Sphère2 **Cylindre**

Plan

Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion 0000000000 Calcul des intersections valides primitives graphe d'adjacence points communs Sphère1 Sphère2 Cylindre Plan

intersections

intersections

intersections

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 00000000
 0000000
 0000000
 0000000
 0000000
 000000

Calcul des intersections pertinentes

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 <td

Décomposition des intersections en *edges*

Grâce aux étapes précédentes :

maillage

Décomposition des intersections en *edges*

Grâce aux étapes précédentes :

Décomposition des intersections en *edges*

Grâce aux étapes précédentes :

 \Rightarrow Découper les intersections

 \Rightarrow Découper les intersections **JONCTIONS** \Rightarrow points vérifiant les 3 tests suivants
 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0

IntroductionPrimitivesTopologieSurfaces paramétriquesRésultatsConclusion00

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats

 00000
 000000
 000000
 000000
 000000

Conclusion

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats

 00000
 000000
 000000
 000000
 000000
 000000

Extraction des jonctions

Conclusion

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats

 00000
 000000
 000000
 000000
 000000
 0000000

Extraction des jonctions

Conclusion

Introduction

Primitives

Topologie ○○○○○●○○○ Surfaces paramétriques

Résultats

Conclusion

Ensuite les edges sont regroupés en contours.

Un seul chemin possible

Ensuite les edges sont regroupés en contours.

() Un seul chemin possible \Rightarrow construction immédiate,

- **()** Un seul chemin possible \Rightarrow construction immédiate,
- Plusieurs chemins

Introduction	Primitives	Topologie ○○○○○○●○○	Surfaces paramétriques	Résultats	Conclusion

- **()** Un seul chemin possible \Rightarrow construction immédiate,
- 2 Plusieurs chemins \Rightarrow utilisation d'un score.

Introduction	Primitives	Topologie ○○○○○○●○○	Surfaces paramétriques	Résultats	Conclusion

- **()** Un seul chemin possible \Rightarrow construction immédiate,
- 2 Plusieurs chemins \Rightarrow utilisation d'un score.

Introduction	Primitives	Topologie ○○○○○○●○○	Surfaces paramétriques	Résultats	Conclusion

- **()** Un seul chemin possible \Rightarrow construction immédiate,
- 2 Plusieurs chemins \Rightarrow utilisation d'un score.

Introduction

Primitives

Topologie ○○○○○○○●○ Surfaces paramétriques

Résultats

Conclusion

Construction des contours

Introduction

Primitives

Topologie ○○○○○○○●○ Surfaces paramétriques

Résultats

Conclusion

Construction des contours

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques

 ○○○○○○
 ○○○○○○○●
 ○○○○○○
 ○○○○○○

Résultats

Conclusion

Création du modèle B-Rep

primitives

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, **Topology Reconstruction for B-Rep Modeling** from 3D Mesh in Reserve Engineering Application, *SPIE2012, 3D Imaging, Interaction and Measurement.*
 Introduction
 Primitives
 Top

 00000
 000000
 00

Topologie

Surfaces paramétriques

Résultats

Conclusion

Création du modèle B-Rep

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 000000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000

Création du modèle B-Rep

Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion

Création du modèle B-Rep

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Topology Reconstruction for B-Rep Modeling from 3D Mesh in Reserve Engineering Application, SPIE2012, 3D Imaging, Interaction and Measurement. Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion

modèle B-Rep [Bénière 12]

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, **Topology Reconstruction for B-Rep Modeling** from 3D Mesh in Reserve Engineering Application, *SPIE2012, 3D Imaging, Interaction and Measurement.*

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
Table al					

Table des matières

Introduction

2 Extraction de primitives

3 Construction de la topologie

4

Surfaces paramétriques

- Pourquoi les surfaces paramétriques ?
- Construction des surfaces paramétriques
- Ajout des surfaces paramétriques au processus

5 Résultats

6 Conclusion

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			•••••		

Pourquoi les surfaces paramétriques ?

Objet CAO non constitué uniquement de primitives géométriques

Pourquoi les surfaces paramétriques ?

Objet CAO non constitué uniquement de primitives géométriques

Pourquoi les surfaces paramétriques ?

Objet CAO non constitué uniquement de primitives géométriques \Rightarrow zones non converties et problèmes de construction des contours

Pourquoi les surfaces paramétriques?

Objet CAO non constitué uniquement de primitives géométriques \Rightarrow zones non converties et problèmes de construction des contours

Pourquoi les surfaces paramétriques?

Objet CAO non constitué uniquement de primitives géométriques \Rightarrow zones non converties et problèmes de construction des contours \Rightarrow nouveaux types de primitives

Pourquoi les surfaces paramétriques ?

Objet CAO non constitué uniquement de primitives géométriques \Rightarrow zones non converties et problèmes de construction des contours \Rightarrow nouveaux types de primitives ou utilisation de surfaces libres.

Pourquoi les surfaces paramétriques?

Objet CAO non constitué uniquement de primitives géométriques \Rightarrow zones non converties et problèmes de construction des contours \Rightarrow nouveaux types de primitives ou utilisation de surfaces libres.

A partir des zones de points étendues

Pourquoi les surfaces paramétriques?

Objet CAO non constitué uniquement de primitives géométriques \Rightarrow zones non converties et problèmes de construction des contours \Rightarrow nouveaux types de primitives ou utilisation de surfaces libres.

A partir des *zones de points étendues* \Rightarrow Maillages restants.

Objet non constitué de primitives géométriques

Pourquoi les surfaces paramétriques ?

Objet non constitué de primitives géométriques \Rightarrow extraction de primitives non appropriée

27/45

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			00000		

Construction des surfaces paramétriques

Construction de surfaces paramétriques [Eck 96]

 \Rightarrow Extraction de carreaux paramétriques.

Maillage initial

M. Eck et H. Hoppe, Automatic reconstruction of B-spline surfaces of Arbitrary Topological Type, 1996.

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			00000		

Construction des surfaces paramétriques

Construction de surfaces paramétriques [Eck 96]

- \Rightarrow Extraction de carreaux paramétriques.
- Contraintes :
 - Carreaux = sommets du maillage + arêtes du maillage
 - \Rightarrow quadrangulation du maillage [Borouchaki 98]

M. Eck et H. Hoppe, Automatic reconstruction of B-spline surfaces of Arbitrary Topological Type, 1996. H. Borouchaki et P.J. Frey, Adaptive triangular-quadrilateral mesh generation, 1998.

Construction des surfaces paramétriques

Construction de surfaces paramétriques [Eck 96]

- \Rightarrow Extraction de carreaux paramétriques.
- Contraintes :
 - Carreaux = sommets du maillage + arêtes du maillage ⇒ quadrangulation du maillage [Borouchaki 98]
 - Carreaux = même Nb Colonnes + même Nb Lignes ⇒ décomposition en grilles rectangulaires régulières [Eppstein 08]

M. Eck et H. Hoppe, Automatic reconstruction of B-spline surfaces of Arbitrary Topological Type, 1996.

H. Borouchaki et P.J. Frey, Adaptive triangular-quadrilateral mesh generation, 1998.

D. Eppstein, M.T. Goodrich, E. Kim et R. Tamstorf, Motorcycle graphs : Canonical mesh partitioning, 2008.

Introduction	1	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion
0						

1 quadrangle = 2 triangles

1 quadrangle = 2 triangles \Rightarrow coefficient de qualité [Bénière 10]

- Angle dièdre (\$\phi\$)
- Angles aux 4 coins (α_i)

- 1 quadrangle = 2 triangles \Rightarrow coefficient de qualité [Bénière 10]
 - Angle dièdre (\$\phi\$)
 - Angles aux 4 coins (α_i)

Puis construction itérative du maillage quadrangulaire :

- 1 quadrangle = 2 triangles \Rightarrow coefficient de qualité [Bénière 10]
 - Angle dièdre (\$\phi\$)
 - Angles aux 4 coins (α_i)

Puis construction itérative du maillage quadrangulaire :

- 1 quadrangle = 2 triangles \Rightarrow coefficient de qualité [Bénière 10]
 - Angle dièdre (\$\phi\$)
 - Angles aux 4 coins (α_i)

Puis construction itérative du maillage quadrangulaire :

- 1 quadrangle = 2 triangles \Rightarrow coefficient de qualité [Bénière 10]
 - Angle dièdre (\$\phi\$)
 - Angles aux 4 coins (α_i)

Puis construction itérative du maillage quadrangulaire :

- 1 quadrangle = 2 triangles \Rightarrow coefficient de qualité [Bénière 10]
 - Angle dièdre (\$\phi\$)
 - Angles aux 4 coins (α_i)

Puis construction itérative du maillage quadrangulaire :

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	
1,-1	1,0	1,1		
	2,0			

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	
	2,0	2,1		
	3,0			

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	
	3,0	3,1		

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

Extraction de grilles rectangulaires régulières

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

Extraction de grilles rectangulaires régulières

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion
			000000		

\Rightarrow Extraction de grilles régulières

Extraction de grilles rectangulaires régulières

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

Extraction de grilles rectangulaires régulières

\Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

Extraction de grilles rectangulaires régulières

 \Rightarrow Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

Extraction de grilles rectangulaires régulières

⇒Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

⇒ Décomposition en grilles rectangulaires régulières

Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 <td

Extraction de grilles rectangulaires régulières

⇒Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

⇒ Décomposition en grilles rectangulaires régulières

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, **Decomposition of a 3D Triangular Mesh into Quadrangulated Patches**, International Conference on Computer Graphics Theory and Application (GRAPP 2010).
 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 <td

Extraction de grilles rectangulaires régulières

⇒Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

⇒ Décomposition en grilles rectangulaires régulières

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, **Decomposition of a 3D Triangular Mesh into Quadrangulated Patches**, International Conference on Computer Graphics Theory and Application (GRAPP 2010).
 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000

Extraction de grilles rectangulaires régulières

⇒Extraction de grilles régulières

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

 \Rightarrow Décomposition en grilles rectangulaires régulières

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, **Decomposition of a 3D Triangular Mesh into Quadrangulated Patches**, *International Conference on Computer Graphics Theory and Application (GRAPP 2010)*.

Maillage restant \Rightarrow surfaces paramétriques restreintes

Maillage restant \Rightarrow surfaces paramétriques restreintes

Maillage restant \Rightarrow surfaces paramétriques restreintes

Maillage restant \Rightarrow surfaces paramétriques restreintes

Maillage restant \Rightarrow surfaces paramétriques restreintes

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion

Table des matières

Introduction

- 2 Extraction de primitives
- 3 Construction de la topologie
- 4 Surfaces paramétriques

- Maillages denses ou épars
- Maillages réels
- Maillages complexes
- Maillages sans primitives

Implémentation de la méthode

Intégration de la méthode dans le logiciel de C4W : 3D Shop.

Introduction
coococPrimitives
coocococTopologie
coocococococSurfaces paramétriquesRésultatsConclusion
coocococRésultatssur desmaillages denses ou épars

	2						
Maillage	e	Prim	itives	Co	ontours	Modèle B-R	lep
			Valeurs	initiales	Valeurs	s retrouvées	
	<u> </u>	(-			

Sphère	Centre (x ;y ;z)	0;0;0	0,000 ;0,000 ;0,001
	Rayon	6	5,999
Plan 1	Coeff(a ;b ;c ;d)	0 ;0 ;1 ;5	0,000 ;0,000 ;1,000 ;5,000
Plan 2	Coeff(a ;b ;c ;d)	0 ;1 ;0 ;5	0,000 ;1,000 ;0,000 ;5,000

35/45

Maillage Primitives

Contours Mo

Modèle B-Rep

Maillage

Primitives

Contours

Modèle B-Rep

 Introduction
 Primitives
 Topologie
 Surfaces paramétriques
 Résultats
 Conclusion

 Résultats
 sur des maillages sans primitives
 000000
 000000
 000000
 000000

Maillage (5 590 trian)

Introduction
coocoPrimitives
coocoTopologie
coocoSurfaces paramétriques
coocoRésultats
coocoConclusion
coocoRésultats
sur des
maillages
sans
primitivesRésultats
coocoConclusion
cooco

Maillage (5 590 trian) Carreaux (335)

Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion 000000 Résultats sur des maillages sans primitives Maillage (5 590 trian) Carreaux (335) Surfaces

Introduction Primitives Topologie Surfaces paramétriques Résultats Conclusion 000000 Résultats sur des maillages sans primitives Maillage (5 590 trian) Carreaux (335) Surfaces

Introduction	Primitives	Topologie	Surfaces paramétriques	Résultats	Conclusion

Table des matières

Introduction

- 2 Extraction de primitives
- 3 Construction de la topologie
- 4 Surfaces paramétriques
- 5 Résultats
- Conclusion
 Bilan de la méthode
 Bernactivos
 - Perspectives

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion ●○○○○
Conclus	eion				

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion ●○○○○
	-				

Conclusion

- Extraction des primitives géométriques
 - Définition de zones homogènes et identification ⇒ nouveau critère d'appartenance à un même cône
 - Calcul des paramètres des primitives
 ⇒ amélioration du calcul des paramètres du cône

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion ●○○○○

Conclusion

- Extraction des primitives géométriques
 - Définition de zones homogènes et identification ⇒ nouveau critère d'appartenance à un même cône
 - Calcul des paramètres des primitives
 ⇒ amélioration du calcul des paramètres du cône
- Construction de la topologie
 - Détermination du voisinage
 - \Rightarrow nouveau formalisme
 - Calcul des intersections et construction des contours ⇒ nouvel algorithme de construction
 - Création du modèle B-Rep

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion ●○○○○

Conclusion

- Extraction des primitives géométriques
 - Définition de zones homogènes et identification ⇒ nouveau critère d'appartenance à un même cône
 - Calcul des paramètres des primitives
 amélioration du calcul des paramètres du cône
- Construction de la topologie
 - Détermination du voisinage
 - \Rightarrow nouveau formalisme
 - Calcul des intersections et construction des contours ⇒ nouvel algorithme de construction
 - Création du modèle B-Rep
- Finalisation par les surfaces paramétriques
 - Quadrangulation du maillage ⇒ nouveau critère de qualité
 - Extraction de grilles rectangulaires régulières ⇒ nouvelle méthode d'extraction

Conclusion

	Extractio	Surf libre	Construe	ction topo	ologie		
	Zones homogènes	Identification	Calcul param	Surf libres	Voisinage	Contours	B-Rep
Notre approche	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion ○○●○○
Perspec	tives				

- Pré-segmentation avant le calcul de la courbure
- Détecter de nouvelles primitives (tore, surface réglée...)
- Optimiser la construction des contours en utilisant des algorithmes de la théorie des graphes
- Considérer les congés et les chanfreins comme des contours particuliers
- Calculer les intersections entre primitives et surfaces libres
- Traiter d'autres types de maillages : maillages scannés

Introduction	Primitives	Topologie 0000000000	Surfaces paramétriques	Résultats	Conclusion ○○○●○
Publicati	ons				

REVUES INTERNATIONALES

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, *A Comprehensive Process of Reverse Engineering from 3D Mesh to CAD Model, Computer Aided Design*, Soumis.

REVUES NATIONALES

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Décomposition d'un maillage triangulaire 3D en carreaux quadrangulés, Revue Electronique Francophone d'Informatique Graphique, 5(1), pages 17–25, 2011.

CONFERENCES INTERNATIONALES

- R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Topology Reconstruction for B-Rep Modeling from 3D Mesh in Reverse Engineering Application, SPIE Electronic Imaging 2012, 3D Imaging, Interaction and Measurement, 8290, 2012.
- R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, *Topology Reconstruction for Reverse Engineering, Computer Graphics International*, Ottawa, 2011.
- 8 R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Recovering Primitives in 3D CAD meshes, SPIE Electronic Imaging 2011, 3D Imaging, Interaction and Measurement, 7864, pages 0R–1–9, 2011.
- R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Decomposition of a 3D Triangular Mesh into Quadrangulated Patches, International Conference on Computer Graphics Theory and Application (GRAPP 2010), pages 96–103, 2010.

CONFERENCES NATIONALES

R. Bénière, G. Subsol, G. Gesquière, F. Le Breton et W. Puech, Décomposition d'un maillage triangulaire 3D en carreaux quadrangulés, 22ème Journées de l'Association Française d'Informatique Graphique, page 133–140, 2009
Introduction

Primitives

Topologie

Surfaces paramétriques

Résultats

Conclusion ○○○○●

Merci de votre attention QUESTIONS ?

Site : www.lirmm.fr/~beniere Mails : roseline.beniere@lirmm.fr roseline.beniere@c4w.com C4W site : www.c4w.com

